If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2-6x-30=0
a = 24; b = -6; c = -30;
Δ = b2-4ac
Δ = -62-4·24·(-30)
Δ = 2916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2916}=54$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-54}{2*24}=\frac{-48}{48} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+54}{2*24}=\frac{60}{48} =1+1/4 $
| 7m+5=40 | | 5x+6=4-3x | | -x+5*0=9 | | 4x+8+4=-2x+8 | | 4x+8+4=-2x+2 | | (u-2)(u-2)=0 | | 2x-0=7 | | 3x-5x-3x=1 | | 4.9t^2+24t-12=0 | | (5x+3x)+7=87 | | 7y-14=-56+y | | x-3x+x=1 | | 4a-5=5a-11 | | -99+15x=-234 | | 2x-4x-x=1 | | x+4*3=x+14 | | 4x/9=7/9 | | x+4*3=x+4*14 | | 12x-9=6+7x | | 0.8g=16 | | 4g+2g=48 | | 2z+1=4 | | 5z=4z-9 | | f+5*3=20 | | 2+1/2+x=5+1/3 | | -4p+6=14p^2÷7p | | 9+x+3/x=3 | | 21/2+x=51/3 | | 7+x+2/x=3 | | H(t)=-3t^2+14t+5 | | 2z/9+1=4 | | 2y^2-8y+12+4=0 |